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Homogeneous Solutions of the Heat Equation
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We complete a characterization of homogeneous solutions of the heat equation
begun by D. V. Widder. We determine regions of convergence for expansions
of temperature functions in terms of the homogeneous solutions.© 1992 Academic

Press, Inc.

1. INTRODUCTION

A solution of the heat equation

iJ2u au

3x2 =ai
is called homogeneous of degree !X if

(1)

(2)

for all }, > O.
Two important sequences of homogeneous solutions of the heat equation

were introduced by Rosenbloom and Widder in [4]. These are {v n } which
are homogeneous of degree nand {wn} which are homogeneous of degree
-n - 1 (n ~ 0). We recall the definition of V n and W n below. Rosenbloom
and Widder gave necessary and sufficient conditions for convergence of
expansions of functions in terms of {v,,} and {w,,}. The underlying idea
is an analogy between these expansions and the expansions of analytic
functions in Laurent series, i.e., in terms of {z"}, - et:) < n < 00. A summary
of investigations into this analogy can be found in [6]. One observes
however that the heat equation is the analog of Laplace's equation in this
context, and for a given integer n Laplace's equation has two independent
solutions with homogeneity n: Re(z") and Im(zn). One is therefore led to
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investigate all homogeneous solutions of the heat equation with a given
homogeneity. This was done-with the exception of two cases-by Widder
in [5]. In this note we supply the two missing functions. It may be interest­
ing to note that the key is the Hilbert transform, which is the classical tool
connecting the real and imaginary parts of some analytic functions.

Consider the ordinary differential ~quation

2tu" +xu' - au = 0, (3)

(6)

where u' denotes the derivative of u with respect to x.
It is proved in [5] that any twice differentiable function which satisfies

any two of (1), (2), or (3) also satisfies the third. It follows that a complete
characterization of all solutions with homogeneity a consists in finding two
independent solutions of (3) with homogeneity a. Moreover, once we have
a solution of (3) homogeneous of any degree, we can obtain a solution of
the correct homogeneity by multiplying it by an appropriate power of t.

There is, of course, a considerable amount of latitude in choosing two
independent solutions of (3). The functions one gets are used as basis
elements for representing solutions of the heat equation. The choices of
particular solutions of (3) are influenced by the properties of the resulting
bases. In particular, the theory of the Hilbert transform enables us to give
necessary and sufficient conditions for convergence of expansions in these
bases.

For n = 0, 1, ... the "heat polynomials" of degree n are the unique polyno­
mials of degree n which satisfy the heat equation, have coefficient of x n

equal to unity, and have homogeneity n. They are defined [4] as
[n/2] tkxn - 2k

vn(x, t)=n! k~O k!(n-2k)!' (4)

Part of the interest in the vn(x, t) stems from their relationship to the
Hermite polynomials. For n = 0, 1, ... define the nth Hermite polynomial
orthogonal with respect to the measure e- x2

/
2 dx as

Hn(x) = ( _l)n ex2
/
2::n e-x

2
/2. (5)

Then [4]

Vn(x, t)= (_2t)n/2Hn(~).

A second independent solution of (3) can be determined by applying a
reduction of order argument to (3) with a = n using vn(x, t) as the first
solution. This gives for t > 0 and x> 0 [5]

hn(x, t) = n! (2t)nvn(x, t) foo k2~Y' t» dy, (7)
x vn y, t



where
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(12)

(13 )

k(x, t)=_1_e- x2
/4t

j4m
is the Gauss-Weierstrass kernel. In [5J it is shown that hn(x, t) has the
simpler representation

hn(x, t) = fXl k(y, t)(y - xY dy, (9)
x

so that (n!) - 1hn ( x, t) is the (n + 1)st integral of k(x, t). Note that the condi­
tion t > 0 is necessary for the convergence of both integrals. In the first
integral, the reason is the existence of the roots of the vn(x, t). Since the
Hermite polynomials have n real roots symmetric about the origin, vn(x, t)
has both positive and negative roots if t < O.

For negative integer homogeneities rt. = -n - 1 < 0 one set of solutions of
(3) are the "associated heat polynomials" given in [4],

Wn(X,t)=k(X,t)Vn(~,~1)= fime-X2/4t(~r!2Hn(fit} (to)

Observe that wn(x, t) is the Appell transform of vn(x, t).
The sequences {wn} and {vn} are biorthogonal for 0 < t < ec:

Lvm(x, - t) wn(x, t) dx = bmw (11)

For t < 0, a second set of solutions of (3) is obtained by applying a
reduction of order argument to wn(x, t):

( )
_ -n!Wn(X, t) foo k(y, t) d

gn x, t - tn+1 x w~(y, t) y.

The following simpler representation is given in [5]:

gn(x, t)=2 tOO e-Xy+ty2yndy.

The condition t < 0 is necessary for the convergence of the integrals in
(12) and (13).

Another way of obtaining gn(x, t) is to take the Appell transform of
hn(x, t).

We summarize Widder's linearly independent solutions of (3) which
satisfy the homogeneity condition (2) with integer n in the following table:

1>0
1<0

Homogeneous of degree n Homogeneous of degree -n-l
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A second independent solution is missing for t < 0, positive homogeneity,
and for t > 0, negative homogeneity. As we have seen before, reduction of
order fails to give a second set of homogeneous solutions in these cases.
Using some recent results about the Hilbert transform of the Gaussian [1]
we are able to give the missing solutions. We then prove necessary and
sufficient conditions for the convergence of expansions in terms of the
homogeneous solutions.

2. A CHARACTERIZATION OF HOMOGENEOUS SOLUTIONS

The Hilbert transform offE LP(R), 1~ p < 00, is defined a.e. by

1 f f(s)
.tt'f(x) = p.v. - - ds.

n RX-S
(14)

For f(x, t) E LP(R, dx), let :Yff(x, t) denote the Hilbert transform of f(x, t)
with respect to the first variable.

THEOREM 1. If u(x, t)ELP(R, dx), 1~p< 00, is a solution of (2) and
(3) in the strip (JI<t<(JZ, if also xu'(x,t), u"(x,t)ELP(R,dx), and
lim1xl-->oo u(x, t)=Ofor (JI <t<(Jz, then .tt'u(x, t) is also a solution of (2)
and (3) in the strip (J I < t < (J z.

Proof Since the Hilbert transform commutes with dilations, (2) will
be satisfied for :Yfu(x, t). Thus, we only need to prove that :Yfu(x, t) will
satisfy (3). We have

:Yf{2tu"(x, t)+xu'(x, t)-au(x, t)}

= 2t:Yf {u"(x, t)} +.tt' {xu'(x, t)} - a.tt'u(x, t)

=2t(:Yfu)"(x, t)+.tt'{xu'(x, t)}-a.tt'u(x, t).

Using Theorem 1 in [2] we have

:Yf {xu'(x, t)} = x:Yf {u'(x, t)} + :Yf{xu'(x, t)}(O)

1 f su'(s, t)
=x(.tt'u)'(x,t)-p.v.- ds

n R s

=x(:Yfu)'{x, t)-.!-f u'(s, t)ds
n R

= x(:Yfu)'{x, t).
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Therefore, we have

2t(Yl'u)"(x, t)+x(Yl'u)'(x, t)-(J(Yl'u(x, t)=O.

39

(15)

This concludes the proof of the theorem.

Concerning the conditions of the theorem, observe that if u(x), u'(x) are
absolutely continuous, if also xu'(x), u"(x) E LP(R), 1~ p < 00, and
lim 1xl ~ 00 u(x) = 0, then an application of Hardy's inequality shows that
u(x) E LP(R).

The next result may be of independent interest.
Let ~(x) denote the Gaussian 1/j2; e- x2/2. In [1] it is proved that

Yl'~(x)=Y'(x) =! e- x2/2 fX eu2/2 duo
n 0

THEOREM 2. Let Hn(x) denote the Hermite polynomials with respect to
the measure ~(x). For n = 0, 1, ... we have

where P _l(X)=O andfor n=O, 1, ...,

1 [nI2] ( - ')1 H ()
Pn(x)=- I (-1)1 n J. n~12j X .

n j=O (n-2)).
(17)

Proof For n=O this is (15). For integer n?: 1, H~=nHn_l' so that

Yl'{Hn(x)~(x)}

{
d d n

-
1

1 }= -Yl' (_It-l e-x212
dxdxn- 1j2;

d
= - dxYl'{Hn-l(X)~(X)}

d
= - dx [Hn_ 1(x)Y'(x)-Pn_ 2(x)]

= -[H~_l(X) Y'(x) +Hn_1(x) Y"(x) - P~_ix)J

= -(n - 1) Hn_ 2(x) Y'(x) + xHn_l(x) Y'(x) - ~ Hn_1(x) + P~_2(X)
n
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For n=O, 1, it can be directly verified that (l/n)Hn(x)-P~_l(X)=Pn(x),

For n?: 2,

1 [(n-l)/2] ( -1- ')' H' ( )
pi (x)=- I (-I)J n J. n~1-2J X

n-l n J~O (n-I-2j)!

1 [(n-2)/2] . (n -1-J')' H .(x)
=- I (-1)1 . n~2-2J

n J~O (n-2-2j)!

1 [nI2] (')' H ()= __ I (_1)1 n - J. n,-,2J X ,
n J~ 1 (n - 2J),

Therefore
1 1 [nI2] (n - j)' H .(x)
-Hn(X)-P~_l(X)=- I (-I)J (' ;,),2J =Pn(x), (18)
n n J~O n - '.j .

and the proof is complete.

Recall for t>°one set of solutions of (2) and (3) for homogeneities
-n -1 <°are the {wn } which are in all LP(R, dx), 1~ P~ 00. Theorems 1
and 2 enable us to find a second set of homogeneous solutions.

THEOREM 3. For t > 0, n = 0, 1, ..., Yf'wn(x, t) satisfies the heat equation,
has homogeneity ()( = -n -1, and is linearly independent of wn(x, t).
Yf'wn(x, t) has the representation

where Pn is the polynomial of Theorem 2.

Proof By Theorem 1, Yf'wn(x, t) satisfies the heat equation and has
homogeneity -n-l. If gELP(R), 1~p< 00, is not the boundary value of
a function analytic in the upper half plane, then g and Yf'g are linearly
independent. Therefore Wn and Yf'wn are linearly independent.

By Theorem 2 and the dilation invariance of the Hilbert transform,

This concludes the proof.
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We turn our attention to the case t < 0, integer homogeneity n ~ O.
Recall the definition of the Appell transform:

(
X -1)siu(x, t) = k(x, t) u t' -t- . (20)

If u(x, t) is a solution of the heat equation in a domain D, then siu(x, t)
is a solution of the heat equation in the domain

(21 )

If u(x, t) is homogeneous of degree IX then siu(x, t) is homogeneous of
degree - IX - 1:

2 2 (h -1)siu(h,), t) = k(h, 2 t) u ~'12
),t At

(
X -1)=). -lk(x, t)). -<Xu t' -/-

= 2 -<X- lsiu(x, t).

Therefore

gives a second solution in t < °for integer homogeneity n ~ 0. It is clearly
linearly independent of the vn(x, t).

This completes the classification of all homogeneous solutions of the heat
equation with integer valued homogeneity. We summarize:

solutions of the heat equation with integer homogeneity n ~ 0:

t>O

t<O
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t>O

t<O
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solutions of the heat equation with integer homogeneity - n - 1< 0:

(2)n/2 (X)Wn(X, t) = k(x, t) vn(xjt, -lit) = k(x, t) t Hn fit

Jltwn(x, t) = fiGr/2

[ H n(fit) y (fit) -Pn-1 (fit)]
(2)n/2 (X)wn(x, t) = k(x, t) vn(xjt, -lit) = k(x, t) t H n fit

( t)= -n'wn(x,t)f oo k(y,t) d =2foo _xy+,y2 nd
gn x , tn+1 2( t) Y e Y y.

x W n y, 0

3. REGIONS OF CONVERGENCE

We are interested in the LP convergence of the expansions
L: cnJltwn(x, t) and L: cndJltwn(x, t); see Theorems 7 and 8 below. The
proofs in the cases p = 1 and p = 00 are complicated by the fact that Y(x)
is not an L l(R) function. We therefore need some preliminary results.

Define the Weyl half derivative as

Di/?f(t) = J; f,oo f'(u)(u- t)-1/2 duo

We have from Lemma 2 in [3]:
For x> 0 and f3 > 1, if for all t > 0

If'(t)1 ~min {:", )/2}'
then

where

(23)

(24)

(25)

LEMMA 4. For n = 0, 1, ..., t > 0, there exist constants Bn such that

(27)



where
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(28)

Proof The case n = 0 follows from L'Hopital's. For n ~ 1, it is shown in
[ 4J that there exists an absolute constant A such that

Since for any f3 > 0

we have from (29)

1/4 (2n)n/2 . {Bn I}
IWn(x,t)I~An ~ ·mm Ixln+l't(n+ll/2 .

Since Dxwn(x, t)= -!wn+1(x, t) (see [4J), we have

ID,wn(x, t)1 = ID~wn(x, t)1

= !lwn + 2(x, t)1

(
2(n + 2))(n+2l12 f B 1}

~A(n+2)1/4 e ·min lIxln:3' t(n + 3)/2 .

For O<to<t (see [4]), we have

Therefore, by Theorem 6 in [3J we have

Dx.J't'wn(x, t) = iD~/2wn(x, t)

so that

l.J't'wn+l(X, t)1 = !IDx.J't'wn(x, t)1

= !ID:/2wn(x, t)1

. {Bn +! I}
:::;;A n+! ·mm Ixl n + 2 ' t(n+2)/2 .

(29)

(30)

(31)

(32)

(33 )
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COROLLARY 5. For t> 0, n = 0, 1, ...

I -//-./p ( )1 A n+l/2x2/4t . {Bn I}
,wJl, W n x, -t ~ nt e ·mlll Ixln+l' t(n+l)/2 '

where An and Bn are the constants of Lemma 4.

Consider temperature functions in the span of the {wn}:

00

u(x, t) = L Cnwn(x, t).
n=O

(34)

(35)

Rosenbloom and Widder, in [4], showed that if L:~o anvn(x, -a)
converges at all points x E E, where E is a set of positive measure, then
lanl = O((e/2na)n/2). (The claim in [4] is for E= [a, b] but their proof
works equally well in the more general case.) Since wn(x, a) = dvn(x, a) =
k(x, a) vn(x/a, -1/0") it follows that if (35) converges for t = 0" >°and all
XEE then

((
ae)n/2)

lenl = 0 2n . (36)

Conversely, if (36) holds, then (35) converges absolutely and uniformly
in half planes t ~ to> a (see [4]).

THEOREM 6. If (36) holds, then (35) converges in LP(R, dx) norm,
1~ p ~ 00, uniformly in half planes t ~ to > a.

Conversely, if for some to>O (35) converges in some LP(R, dx) norm,
1~ p ~ 00, then (36) holds for all a> to.

Proof For n ~ 1 and t ~ to > a, if Cn satisfies (36), we have from (29)
for 1~ p ~ 00

00 00 n~(~)~L len I . /lwn(·, t)ll p~ A Ile-x2/8t/lp L: Ienl172 -
n=l n=l t et

00 (a )n/2
~ Ap,to L: n1

/
4 - < 00,

n= 1 to

so that we have uniform LP(R, dx) convergence for t ~ to,
For the converse it suffices to show that convergence in LP(R, dx) norm

for some to> 0 implies pointwise convergence for t> to, Let SN(X, t) =
L;;'=o cnwn(x, t). By (32) we have

ISN(X, t) - SM(X, t)1 ~ IIk( " t - to)llp' liSN(', to) - SM( " to)llp,

where l/p + l/p' = 1. The last term converges to zero as N, M ~ 00, and the
theorem is proved.
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Note that since D~k)wn(x, t) = ( - !)kwn + k(X, t), n, k = 0, 1,2, ... ([4 ]), we
have LP convergence of the expansion of n<;,)u(x, t) obtained by termwise
differentiation of (35).

THEOREM 7. Suppose for some (J > 0:

((
ae)n/2)ICnl = 0 2n .

For t> (J, let
00

u(x, t) = L Cnwn(x, t).
n~l

Then
00

£u(x, t) = L cn£wn(x, t)
n~l

(37)

(38)

(39)

converges in LP(R, dx) norm, 1 :( p:( 00, uniformly in half planes t ~ to> a.
Conversely, if for some to>O (39) converges in some LP(R, dx) norm,

1:( p:( 00, then (37) holds for all (J> to.

Proof For 1 < p < 00 the LP convergence of (39) follows trivially from
the LP continuity of the Hilbert transform. The point of the proof below is
therefore the cases p = 1 and p = 00.

If (37) holds, then
00

L cn wn _ 1(x, t)
n=l

converges in LP(R, dx), 1:( p:( 00, for each t> (J. By (32), if n ~ 1 and
0< to < t, since Dx wn(x, t) = (-1/2) wn+ l(X, t), we have

£wn(x, t) = t Y'(x - y, t - to) wn(y, to) dy

where Y'(x, t) = £k(x, t) = £wo(x, t), and differentiation is with respect
to the first variable. By Lemma 4, Y"(x, t) = - ! £Wl(X, t) E LP(R, dx),
1 :( p:( 00.

Let £SN(X, t)=L:;;=Ocn£wn(x, t). Then

II£SN(-, t)-£SM(', t)ll p :( IIY"(-, t-to)llj' t~~+l cn wn _ 1(" to)t,

The convergence is uniform for t ~ t 1 > to> (J.



46 KOCHNEFF, SAGHER, AND ZHOU

Conversely, if for some to>O (39) converges in some LP(R, dx) we have
from (32)

so that for 1~p~ 00, t> to,

I
£ Cn_IWn(X,t)I~21IgJl(.,t-to)IJp'·11 £ Cn_IY'l'Wn_I(-,to)ll·

n=M+I n~M+I P

Therefore, by Theorem 6,

((
ae)n/2)

ICn-11 = 0 2n (42)

for all a> to. Therefore (37) holds for all a> to'
Note, since D~k)Y'l'wn(x, t) = (- !)k Y'l'Wn+k(X, t), we have LP con­

vergence of the expansion of D~k)Y'l'U(X, t) obtained by termwise differentia­
tion of (39),

Since for t> 0, d Y'l'wn(x, - t) = k(x, - t) Y'l'wn( - xlt, lit) we determine
the region of convergence of the series L: cndY'l'wn(x, t) using Theorem 7.
We get:

THEOREM 8. If for some a > 0

then the series

00

u(x, t) = I cndY'l'wn(x, - t)
n~1

(43)

(44)

converges uniformly in strips 0 ~ t ~ to < a. Furthermore, the series for
u(x, t)lk(x, - t) converges uniformly in LP(R, dx), 1~ P ~ 00, in strips
O~ t~ to< a.

Conversely, if for some to> 0 the series for u(x, t)/k(x, - t) converges in
some LP(R, dx), 1~ P ~ 00, then (43) holds for all a < to.
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